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Hidden Surface Removal

 Drawing polygon faces on screen consumes CPU cycles

 We cannot see every surface in scene

 To save time, draw only surfaces we see

 Surfaces we cannot see and their elimination methods:

 Occluded surfaces: hidden surface removal (visibility)

 Back faces: back face culling

 Faces outside view volume: viewing frustrum culling/clipping

 Definitions:

 Object space: before vertices are mapped to pixels

 Image space: after vertices have been rasterized
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Visibility (hidden surface removal)

 A correct rendering requires correct visibility calculations

 Correct visibility – when multiple opaque polygons cover 
the same screen space, only the front most one is visible 
(remove the hidden surfaces)

wrong visibility Correct visibility
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Visibility (hidden surface removal)

 Goal: determine which objects are visible to the eye

 Determine what colors to use to paint the pixels

 Active research subject - lots of algorithms have been 
proposed in the past (and is still a hot topic)
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No Lines Removed
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Hidden Lines Removed
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Hidden Surfaces Removed
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Occlusion: Full, Partial, None

Full

Partial

None

• The rectangle is closer than the triangle
• Should appear in front of the triangle
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Backface Culling

 Avoid drawing polygons facing away from the viewer

➢ Front-facing polygons occlude these polygons in a closed 
polyhedron

 Test if a polygon is front- or back-facing?

front-facing

back-facing

Ideas?

8-Aug-25Hidden Surface Removal

9



Backface Culling

 If we find backface, do not draw, save rendering resources

 There must be other forward face(s) closer to eye

 F is face of object we want to test if backface

 P is a point on F

 Form view vector, V as (eye – P)

 N is normal to face F

N

V

N
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Detecting Back-face Polygons

 The polygon normal of a …
➢ front-facing polygon points towards the viewer
➢ back-facing polygon points away from the viewer

If (n  v) > 0  “back-face”
If (n  v) ≤ 0  “front-face”
v = view vector

 Eye-space test … EASY!
➢ “back-face” if nz < 0

back

front
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Polygon Normals

 Let polygon vertices v0, v1, v2,..., vn - 1 be in counterclockwise 

order and co-planar

 Calculate normal with cross product:            

 n = (v1 - v0) X (vn - 1 - v0)

 Normalize to unit vector with n/║n║

v0
v1

v2

v3

v4

n
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Normal Direction

 Vertices counterclockwise  Front-facing

 Vertices clockwise  Back-facing

0

1

2

0

2

1

Front facing Back facing
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Visibility

 How do we ensure that closer polygons overwrite further 
ones in general?
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Image Space Approach – Z-buffer

 Method used in most of graphics hardware (and thus OpenGL):  
Z-buffer algorithm

 Requires lots of memory

 Basic idea: 

 rasterize every input polygon

 Recall that we have z at polygon vertices

 Maintains 2 buffers

 For every pixel in the polygon interior, calculate its  
corresponding z value (by interpolation) (Z buffer)

 Choose the color of the polygon whose z value is the closest to 
the eye to paint the pixel. (Refresh Buffer)
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Image Space Approach – Z-buffer

 Recall: after projection transformation

 In viewport transformation

 x,y used to draw screen image

 z component is mapped to pseudo-depth with range [0,1]

 However, objects/polygons are made up of vertices

 Hence z is known at vertices

 Point in object seen through pixel may be between vertices

 Need to interpolate to find z
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Z (depth) buffer algorithm

 How to choose the polygon that has the closet Z for a given 
pixel?

 Assumption for example: eye at z = 0, farther objects have 
increasingly negative values

➢ Initialize (clear) every pixel in the z buffer to a very 
large negative value

➢ Track polygon z’s. 

➢ As we rasterize polygons, check to see if polygon’s z 
through this pixel is less than current minimum z 
through this pixel

➢ Run the following loop: 
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Z (depth) Buffer Algorithm

For  each polygon  { 

   for each pixel (x,y) inside the polygon projection area  {

          if  (z_polygon_pixel(x,y) > depth_buffer(x,y) ) {

                 depth_buffer(x,y) = z_polygon_pixel(x,y); 

                 color_buffer(x,y) = polygon color at (x,y)
           }
      }
  }

Note: we have depths at vertices. Interpolate for interior depths
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Z buffer example

eye

Z = -.3

Z = -.5

Top View 

Final image 
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Z buffer example

-999    -999   -999   -999

-999    -999   -999   -999

-999    -999   -999   -999

-999    -999   -999   -999

Step 1:  Initialize the depth buffer 
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Z buffer example

Step 2: Draw the blue polygon (assuming the OpenGL 
            program draws blue polyon first – the order does 
           not affect the final result any way). 

eye

Z = -.3

Z = -.5
-999    -999   -999   -999

-999    -999   -999   -999

-.5      -.5     -999   -999

-.5      -.5     -999   -999
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Z buffer example

Step 3: Draw the yellow polygon

eye

Z = -.3

Z = -.5
-999    -999   -999   -999

-999      -.3       -.3     -999

-.5       -.3       -.3     -999

-.5       -.5     -999   -999
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Calculating depth values efficiently

• We know the depth values at the vertices.  How can we 

calculate the depth at any other  point on the surface of the

polygon.

• Using the polygon surface equation:

z =
− Ax − By −D

C
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Calculating depth values efficiently

●

 For any scan line adjacent horizontal x  positions or 

vertical y positions differ by 1  unit.

 The depth value of the next position (x+1,y)  on the 

scan line can be obtained using.

8-Aug-25Hidden Surface Removal

24



Z-Buffer

 How do we calculate the depth values on the polygon 
interior?

P1

P2

P3

P4
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Z-Buffer Example
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Limitation of Z-buffer Algorithm

• This algorithm do not work on transparent  

surface, this is only for opaque surface.

• Hence here no method is available to compare  the 

Z values of the surfaces which are  transparent.

• For working on transparent surface another  

method is available which is called A-buffer  

Algorithm.

• Extra memory is required to store depth value.
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A-Buffer Method

• Extends the depth-buffer algorithm so that each

position in the buffer can reference a linked list

of surfaces.

• More memory is required.

• However, we can correctly compose different

surface colors and handle transparent surfaces.
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A-Buffer Method

• Each position in the A-buffer has two fields:

– a depth field

– surface data field which can be either surface  data or a 

pointer to a linked list of surfaces  that contribute to that 

pixel position

– Many other information can be stored in the link list such  as 

: % of transparency, % of area coverage, surface rendering 

factor.

8-Aug-25Hidden Surface Removal

31



Object Space Methods
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Depth Sorting

• Also known as painters algorithm. First draw the  

distant objects than the closer objects. Pixels of each  

object overwrites the previous objects.
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Depth-sort algorithm

•  The idea here is to go back to front drawing all the objects into
the frame buffer with nearer objects being drawn over top of
objects that are further away.

• Simple algorithm:
– Sort all polygons based on their farthest z coordinate
– Resolve ambiguities
– Draw the polygons in order from back to front

• This algorithm would be very simple if the z coordinates of the
polygons were guaranteed never to overlap. Unfortunately that
is usually not the case, which means that step 2 can be
somewhat complex.
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Depth-sort algorithm

• First must determine z-extent for each polygon
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Depth-sort algorithm

• Ambiguities arise when the z-extents of two 

surfaces overlap.
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Depth-sort algorithm
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Depth-sort algorithm

• All polygons whose z extents overlap must be tested
     against each other.

• We start with the furthest polygon and call it P. Polygon P must 
be compared with every polygon Q whose z extent overlaps P’s z 
extent. 5 comparisons are made. If any comparison is true then 
P can be written before Q. If at least one comparison is true for 
each of the Qs then P is drawn and the next polygon from the 
back is chosen as the new P.
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Depth-sort algorithm

1. Do P and Q's x-extents not overlap?

2. Do P and Q's y-extents not overlap?

3. Is P entirely on the opposite side of Q's plane from the  
viewport?

4. Is Q entirely on the same side of P's plane as the viewport?

5. Do the projections of P and Q onto the (x,y) plane not  
overlap?

• If all 5 tests fail we quickly check to see if switching P and Q  will 
work. Tests 1, 2, and 5 do not differentiate between P and  Q but 3 
and 4 do. So we rewrite 3 and 4 as: 

3’. Is Q entirely on the opposite side of P's plane from the viewport?

4’. Is P entirely on the same side of Q's plane as the viewport?
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Depth-sort algorithm

• x - extents not overlap?
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Depth-sort algorithm

• y - extents not overlap?
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Depth-sort algorithm

• Is P entirely behind the surface Q relative to the 

viewing position (i.e., behind Q’s plane with 

respect to the viewport)?
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Depth-sort algorithm

• Is Q entirely in front of P's plane relative to the 

viewing position (i.e., the viewport)?
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Depth-sort algorithm

• Do the projections of P and Q onto the (x,y) 

plane not overlap?
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Depth-sort algorithm

• If all tests fail…
– … then reverse P and Q in the list of surfaces
sorted by maximum depth
– set a flag to say that the test has been performed
once.
– If the tests fail a second time, then it is
necessary to split the surfaces and repeat the
algorithm on the 4 new split surfaces
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• Example:

– We end up processing with order Q2,P1,P2,Q1
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Reference

 Computer Graphics
o Donald Hearn, M Pauline Baker
o Pearson Education
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