
Hidden Surface Removal

Amartya Kundu Durjoy
Lecturer, CSE, UGV

Hidden Surface Removal

 Drawing polygon faces on screen consumes CPU cycles

 We cannot see every surface in scene

 To save time, draw only surfaces we see

 Surfaces we cannot see and their elimination methods:

 Occluded surfaces: hidden surface removal (visibility)

 Back faces: back face culling

 Faces outside view volume: viewing frustrum culling/clipping

 Definitions:

 Object space: before vertices are mapped to pixels

 Image space: after vertices have been rasterized

8-Aug-25Hidden Surface Removal

2

Visibility (hidden surface removal)

 A correct rendering requires correct visibility calculations

 Correct visibility – when multiple opaque polygons cover
the same screen space, only the front most one is visible
(remove the hidden surfaces)

wrong visibility Correct visibility

8-Aug-25Hidden Surface Removal

3

Visibility (hidden surface removal)

 Goal: determine which objects are visible to the eye

 Determine what colors to use to paint the pixels

 Active research subject - lots of algorithms have been
proposed in the past (and is still a hot topic)

8-Aug-25Hidden Surface Removal

4

No Lines Removed

8-Aug-25Hidden Surface Removal

5

Hidden Lines Removed

8-Aug-25Hidden Surface Removal

6

Hidden Surfaces Removed

8-Aug-25Hidden Surface Removal

7

Occlusion: Full, Partial, None

Full

Partial

None

• The rectangle is closer than the triangle
• Should appear in front of the triangle

8-Aug-25Hidden Surface Removal

8

Backface Culling

 Avoid drawing polygons facing away from the viewer

➢ Front-facing polygons occlude these polygons in a closed
polyhedron

 Test if a polygon is front- or back-facing?

front-facing

back-facing

Ideas?

8-Aug-25Hidden Surface Removal

9

Backface Culling

 If we find backface, do not draw, save rendering resources

 There must be other forward face(s) closer to eye

 F is face of object we want to test if backface

 P is a point on F

 Form view vector, V as (eye – P)

 N is normal to face F

N

V

N

8-Aug-25Hidden Surface Removal

10

Detecting Back-face Polygons

 The polygon normal of a …
➢ front-facing polygon points towards the viewer
➢ back-facing polygon points away from the viewer

If (n  v) > 0  “back-face”
If (n  v) ≤ 0  “front-face”
v = view vector

 Eye-space test … EASY!
➢ “back-face” if nz < 0

back

front

8-Aug-25Hidden Surface Removal

11

Polygon Normals

 Let polygon vertices v0, v1, v2,..., vn - 1 be in counterclockwise

order and co-planar

 Calculate normal with cross product:

 n = (v1 - v0) X (vn - 1 - v0)

 Normalize to unit vector with n/║n║

v0
v1

v2

v3

v4

n

8-Aug-25Hidden Surface Removal

12

Normal Direction

 Vertices counterclockwise  Front-facing

 Vertices clockwise  Back-facing

0

1

2

0

2

1

Front facing Back facing

8-Aug-25Hidden Surface Removal

13

Visibility

 How do we ensure that closer polygons overwrite further
ones in general?

8-Aug-25Hidden Surface Removal

14

Image Space Approach – Z-buffer

 Method used in most of graphics hardware (and thus OpenGL):
Z-buffer algorithm

 Requires lots of memory

 Basic idea:

 rasterize every input polygon

 Recall that we have z at polygon vertices

 Maintains 2 buffers

 For every pixel in the polygon interior, calculate its
corresponding z value (by interpolation) (Z buffer)

 Choose the color of the polygon whose z value is the closest to
the eye to paint the pixel. (Refresh Buffer)

8-Aug-25Hidden Surface Removal

15

Image Space Approach – Z-buffer

 Recall: after projection transformation

 In viewport transformation

 x,y used to draw screen image

 z component is mapped to pseudo-depth with range [0,1]

 However, objects/polygons are made up of vertices

 Hence z is known at vertices

 Point in object seen through pixel may be between vertices

 Need to interpolate to find z

8-Aug-25Hidden Surface Removal

16

Z (depth) buffer algorithm

 How to choose the polygon that has the closet Z for a given
pixel?

 Assumption for example: eye at z = 0, farther objects have
increasingly negative values

➢ Initialize (clear) every pixel in the z buffer to a very
large negative value

➢ Track polygon z’s.

➢ As we rasterize polygons, check to see if polygon’s z
through this pixel is less than current minimum z
through this pixel

➢ Run the following loop:

8-Aug-25Hidden Surface Removal

17

Z (depth) Buffer Algorithm

For each polygon {

 for each pixel (x,y) inside the polygon projection area {

 if (z_polygon_pixel(x,y) > depth_buffer(x,y)) {

 depth_buffer(x,y) = z_polygon_pixel(x,y);

 color_buffer(x,y) = polygon color at (x,y)
 }
 }
 }

Note: we have depths at vertices. Interpolate for interior depths

8-Aug-25Hidden Surface Removal

18

Z buffer example

eye

Z = -.3

Z = -.5

Top View

Final image

8-Aug-25Hidden Surface Removal

19

Z buffer example

-999 -999 -999 -999

-999 -999 -999 -999

-999 -999 -999 -999

-999 -999 -999 -999

Step 1: Initialize the depth buffer

8-Aug-25Hidden Surface Removal

20

Z buffer example

Step 2: Draw the blue polygon (assuming the OpenGL
 program draws blue polyon first – the order does
 not affect the final result any way).

eye

Z = -.3

Z = -.5
-999 -999 -999 -999

-999 -999 -999 -999

-.5 -.5 -999 -999

-.5 -.5 -999 -999

8-Aug-25Hidden Surface Removal

21

Z buffer example

Step 3: Draw the yellow polygon

eye

Z = -.3

Z = -.5
-999 -999 -999 -999

-999 -.3 -.3 -999

-.5 -.3 -.3 -999

-.5 -.5 -999 -999

8-Aug-25Hidden Surface Removal 22

Calculating depth values efficiently

• We know the depth values at the vertices. How can we

calculate the depth at any other point on the surface of the

polygon.

• Using the polygon surface equation:

z =
− Ax − By −D

C

8-Aug-25Hidden Surface Removal

23

Calculating depth values efficiently

●

 For any scan line adjacent horizontal x positions or

vertical y positions differ by 1 unit.

 The depth value of the next position (x+1,y) on the

scan line can be obtained using.

8-Aug-25Hidden Surface Removal

24

Z-Buffer

 How do we calculate the depth values on the polygon
interior?

P1

P2

P3

P4

ys za zp zb

Scanline order
)(

)(
)(

)(

)(
)(

)(

)(
)(

ba

pa

abap

s

b

s

a

xx

xx
zzzz

yy

yy
zzzz

yy

yy
zzzz

−

−
−+=

−

−
−+=

−

−
−+=

21

1

121

41

1

141

Bilinear Interpolation

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

Z-buffer

Screen

Z-Buffer Example



 

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

  

 



  

 



Parallel with

the image plane

Z-Buffer Example







   

   

   

  

 



 



   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

Not Parallel

Z-Buffer Example

Limitation of Z-buffer Algorithm

• This algorithm do not work on transparent

surface, this is only for opaque surface.

• Hence here no method is available to compare the

Z values of the surfaces which are transparent.

• For working on transparent surface another

method is available which is called A-buffer

Algorithm.

• Extra memory is required to store depth value.

8-Aug-25Hidden Surface Removal

29

A-Buffer Method

• Extends the depth-buffer algorithm so that each

position in the buffer can reference a linked list

of surfaces.

• More memory is required.

• However, we can correctly compose different

surface colors and handle transparent surfaces.

8-Aug-25Hidden Surface Removal

30

A-Buffer Method

• Each position in the A-buffer has two fields:

– a depth field

– surface data field which can be either surface data or a

pointer to a linked list of surfaces that contribute to that

pixel position

– Many other information can be stored in the link list such as

: % of transparency, % of area coverage, surface rendering

factor.

8-Aug-25Hidden Surface Removal

31

Object Space Methods

8-Aug-25Hidden Surface Removal

32

Depth Sorting

• Also known as painters algorithm. First draw the

distant objects than the closer objects. Pixels of each

object overwrites the previous objects.

8-Aug-25Hidden Surface Removal

33

Depth-sort algorithm

• The idea here is to go back to front drawing all the objects into
the frame buffer with nearer objects being drawn over top of
objects that are further away.

• Simple algorithm:
– Sort all polygons based on their farthest z coordinate
– Resolve ambiguities
– Draw the polygons in order from back to front

• This algorithm would be very simple if the z coordinates of the
polygons were guaranteed never to overlap. Unfortunately that
is usually not the case, which means that step 2 can be
somewhat complex.

8-Aug-25Hidden Surface Removal

34

Depth-sort algorithm

• First must determine z-extent for each polygon

8-Aug-25Hidden Surface Removal

35

Depth-sort algorithm

• Ambiguities arise when the z-extents of two

surfaces overlap.

8-Aug-25Hidden Surface Removal

36

Depth-sort algorithm

8-Aug-25Hidden Surface Removal

37

Depth-sort algorithm

• All polygons whose z extents overlap must be tested
 against each other.

• We start with the furthest polygon and call it P. Polygon P must
be compared with every polygon Q whose z extent overlaps P’s z
extent. 5 comparisons are made. If any comparison is true then
P can be written before Q. If at least one comparison is true for
each of the Qs then P is drawn and the next polygon from the
back is chosen as the new P.

8-Aug-25Hidden Surface Removal

38

Depth-sort algorithm

1. Do P and Q's x-extents not overlap?

2. Do P and Q's y-extents not overlap?

3. Is P entirely on the opposite side of Q's plane from the
viewport?

4. Is Q entirely on the same side of P's plane as the viewport?

5. Do the projections of P and Q onto the (x,y) plane not
overlap?

• If all 5 tests fail we quickly check to see if switching P and Q will
work. Tests 1, 2, and 5 do not differentiate between P and Q but 3
and 4 do. So we rewrite 3 and 4 as:

3’. Is Q entirely on the opposite side of P's plane from the viewport?

4’. Is P entirely on the same side of Q's plane as the viewport?

8-Aug-25Hidden Surface Removal

39

Depth-sort algorithm

• x - extents not overlap?

8-Aug-25Hidden Surface Removal

40

Depth-sort algorithm

• y - extents not overlap?

8-Aug-25Hidden Surface Removal

41

Depth-sort algorithm

• Is P entirely behind the surface Q relative to the

viewing position (i.e., behind Q’s plane with

respect to the viewport)?

8-Aug-25Hidden Surface Removal

42

Depth-sort algorithm

• Is Q entirely in front of P's plane relative to the

viewing position (i.e., the viewport)?

8-Aug-25Hidden Surface Removal

43

Depth-sort algorithm

• Do the projections of P and Q onto the (x,y)

plane not overlap?

8-Aug-25Hidden Surface Removal

44

Depth-sort algorithm

• If all tests fail…
– … then reverse P and Q in the list of surfaces
sorted by maximum depth
– set a flag to say that the test has been performed
once.
– If the tests fail a second time, then it is
necessary to split the surfaces and repeat the
algorithm on the 4 new split surfaces

8-Aug-25Hidden Surface Removal

45

• Example:

– We end up processing with order Q2,P1,P2,Q1

8-Aug-25Hidden Surface Removal

46

Depth-sort algorithm

Reference

 Computer Graphics
o Donald Hearn, M Pauline Baker
o Pearson Education

8-Aug-25

47

Hidden Surface Removal

	Slide 1: Hidden Surface Removal
	Slide 2: Hidden Surface Removal
	Slide 3: Visibility (hidden surface removal)
	Slide 4: Visibility (hidden surface removal)
	Slide 5: No Lines Removed
	Slide 6: Hidden Lines Removed
	Slide 7: Hidden Surfaces Removed
	Slide 8: Occlusion: Full, Partial, None
	Slide 9: Backface Culling
	Slide 10: Backface Culling
	Slide 11: Detecting Back-face Polygons
	Slide 12: Polygon Normals
	Slide 13: Normal Direction
	Slide 14: Visibility
	Slide 15: Image Space Approach – Z-buffer
	Slide 16: Image Space Approach – Z-buffer
	Slide 17: Z (depth) buffer algorithm
	Slide 18: Z (depth) Buffer Algorithm
	Slide 19: Z buffer example
	Slide 20: Z buffer example
	Slide 21: Z buffer example
	Slide 22
	Slide 23: Calculating depth values efficiently
	Slide 24: Calculating depth values efficiently
	Slide 25: Z-Buffer
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Limitation of Z-buffer Algorithm
	Slide 30: A-Buffer Method
	Slide 31: A-Buffer Method
	Slide 32: Object Space Methods
	Slide 33: Depth Sorting
	Slide 34: Depth-sort algorithm
	Slide 35: Depth-sort algorithm
	Slide 36: Depth-sort algorithm
	Slide 37: Depth-sort algorithm
	Slide 38: Depth-sort algorithm
	Slide 39: Depth-sort algorithm
	Slide 40: Depth-sort algorithm
	Slide 41: Depth-sort algorithm
	Slide 42: Depth-sort algorithm
	Slide 43: Depth-sort algorithm
	Slide 44: Depth-sort algorithm
	Slide 45: Depth-sort algorithm
	Slide 46: Depth-sort algorithm
	Slide 47: Reference

